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Finite State and Finite Stop Quantum Languages
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We propose the concept of finite stop quantum automata (ftqa) based on Hilbert space
and compare it with the finite state quantum automata (fsqa) proposed by Moore and
Crutchfield (Theoretical Computer Science 237(1–2), 2000, 275–306). The languages
accepted by fsqa form a proper subset of the languages accepted by ftqa. In addition, the
fsqa form an infinite hierarchy of language inclusion with respect to the dimensionality
of unitary matrices. We introduce complex-valued acceptance degrees and two types of
finite stop quantum automata based on them: the invariant ftqa (icftq) and the variant
ftqa (vcftq). The languages accepted by icftq form a proper subset of the languages
accepted by vcftq. In addition, the icftq form an infinite hierarchy of language inclusion
with respect to the dimensionality of unitary matrices. In this way, we establish two
proper inclusion relations L (fsqa) ⊂ L (ftqa) and L (icftq) ⊂ L (vcftq), where the
symbol L means languages, and two infinite language hierarchies Ln (fsqa) ⊂ Ln+1
(fsqa), Ln (icftq) ⊂ Ln+1 (icftq).

KEY WORDS: finite state quantum automata; finite stop quantum automata; complex
valued quantum automata; quantum languages.

1. INTRODUCTION

Research on quantum computation not only stimulated people to find efficient
quantum algorithms, but also to do some research on basic theories of quantum
computation. It is well known that automata are simple theoretical models of
computers. So quantum automata have become an active research area gradually.

1 Shanghai Key Lab of Intelligent Information Processing, Fudan University, Shanghai 200433, P.R.
China.

2 Beijing Key Lab of Multimedia and Intelligent Software, Beijing University of Technology, Beijing
100022, P.R. China.

3 Key Lab of IIP, Institute of Computing Technology, Academia Sinica, Beijing 100080, P.R. China.
4 Key Lab of MADIS, Academia Sinica, Beijing 100080, P.R. China.
5 Institute of Mathematics, AMSS, Academia Sinica, Beijing 100080, P.R. China.
6 Patent Examination Cooperation Center, State Intellectual Property Office of the People’s Republic

of China, Xuezhixuan Building, 16 Xueqing Road, Haidian District, Beijing 100080, P.R. China.
7 To whom correspondence should be addressed at Institute of Mathematics, Academy of Mathematics

and System Sciences, Academia Sinica, Beijing 100080, P.R. China.

1495
0020-7748/05/0900-1495/0 C© 2005 Springer Science+Business Media, Inc.



1496 Lu and Zheng

Moore and Crutchfield (2000) introduced several types of Quantum automata
based on Hilbert space in their recent paper, in which the authors defined quantum
finite state and quantum push-down automata (QFAs and QPDAs) as special cases
of a more general object, a real-time quantum automaton. In this paper, first,
we proposed a new type of finite state quantum automata (we call them finite
stop quantum automata) based on Hilbert space and compared it with the QFAs
proposed by Moore and Crutchfield (2000). Then we investigated the relations
between the languages accepted by their automata and the languages accepted by
ours. Later, the relations between the languages accepted by n-dimensional finite
state quantum automata and n + 1-dimensional finite state quantum automata have
been studied. In this way, we gave a hierarchy of all finite state quantum automata.
Finally, two new types of quantum automata with complex acceptance degrees
have been defined and the relations between the languages accepted by them have
been discussed.

2. FINITE STATE QUANTUM AUTOMATA

Definition 2.1. (Moore and Crutchfield, 2000). A real-time quantum automaton
R can be represented with a six tuple R = (H,Haccept, Sinit, Paccept, �, �), with

1. A Hilbert space H;
2. An initial vector Sinit ∈ H , where |Sinit|2 = 1;
3. A sub-space Haccept ⊂ H and an operator Paccept projecting elements of H

into Haccept;
4. A finite alphabet � of input symbols;
5. A finite set of unitary matrices � = {Ux | for each x ∈ �};

The quantum language L(R) recognized by R is defined as the
following function:

fR(w) = |SinitUwPaccept|2 (1)

where w = x1x2, . . . , xn is an input string, Uw = Ux1Ux2 , . . . , Uxn
is the

matrix product of the input symbols. This function maps each string w in
the interval [0, 1].

In this paper, we also use the notation

Accept(R, w) = |SinitUwPaccept|2 (2)

to replace (1).

We make the following remarks to the previous definition. First, a Hilbert
space has in general infinitely many dimensions. Second, there is actually no
definition of states. Third, the unitary matrix corresponding to each input symbol
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is unique and the application of it is thus history insensitive. Fourth, the item
Haccept in the previous definition is determined by other factors, since if we let:

P ′ = closure {v|v = SinitUwPaccept, where Uw is a finite product of matrices

from �}

where closure means the smallest linear sub-space of H containing all v, then
there will be no problem to use P ′ as the sub-space Haccept. Due to this reason, the
item Haccept will not appear in the definitions later.

Moore and Crutchfield (2000) have paid attention to the first point and have
given a second definition about quantum automata:

Definition 2.2. (Moore and Crutchfield, 2000). A real-time quantum automaton
R is called a finite state automaton if H, Sinit and all Ux are finite dimensional and
have the same dimension n.

To be of practical meaning, we consider the operator Paccept as an n × m

matrix of complex numbers, where 1 ≤ m ≤ n.
There is a significant difference between the notion “finite state automaton”

used in this context and that in the classical sense. The notion “finite state” refers
only to the finite number of basic states of a Hilbert Space. It is questionable if
we count the number of all mixed states, of which each is a linear combination of
the basic states. In general, there may be infinitely many mixed states produces by
such an automaton. We try to make the concept of a mixed state explicit with the
following definition.

Definition 2.3. A mixed state of a real-time quantum automaton R based on a fi-
nite (n)-dimensional Hilbert space, where H, Sinit and all Ux are finite dimensional
and have the same dimension n, is defined as follows:

1. Sinit is a mixed state, called the initial mixed state;
2. If a is a mixed state, and Ux is an n-dimensional unitary matrix corre-

sponding to the input symbol x, then aUx is also a mixed state, which is
reachable from a by accepting the input symbol x.

Theorem 2.1.

1. All mixed states are normalized, i.e, if a is a mixed state, then |a|2 = 1.
2. There are real-time quantum automata based on finite-dimensional Hilbert

space, which have infinitely many mixed states.
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Proof: Let a be a mixed state, then a is produced by a product of the initial
mixed state Sinit with finitely many unitary matrices, i.e. a = SinitUw, where Uw is
the matrix product. Thus, �

aa′ = SinitUwU ′
wS ′

init = SinitS
′
init = 1 (3)

This shows that a is normalized.
Construct a real-time automaton R based on n-dimensional Hilbert space H

as follows:

(1) Sinit = 1√
n

(1, 1, . . . , 1)

(2) Paccept = 1√
n

(1, 1, . . . , 1)′

(3) � = {x}

(4) Ux =




eic1π

eic2π

· · ·
eicnπ


, where all cj , 1 ≤ j ≤ n, are real numbers.

After receiving the input string xm, the automaton enters in the mixed state:

s(xm) = 1√
n

(eimc1π , eimc2π , . . . , eimcnπ ) (4)

We will check the condition when it is possible for the automaton to produce
two identical mixed states, i.e. when it is possible that

s(xm) = s(xk) for m �= k

For that, it must be

eimc1π = eikc1π ,

· · ·
eimcnπ = eikcnπ .

That means

mc1 = kc1 + 2j1

· · ·
mcn = kcn + 2jn

where for all g, jg are integers. Therefore, for m �= k we have the equation:

cg = 2jg

m − k
, 1 ≤ g ≤ n (5)

This shows that in order to produce identical mixed states, all cg must be rational
numbers. Therefore, we need only to choose irrational numbers for the cg to let
the automaton always produce new mixed states. This proves that the automaton
will produce infinitely many mixed states. �
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Due to this fact, we will introduce a new concept of automata which can serve
as a bridge between the classical finite state automata and the quantum finite state
automata as they are defined in (Moore and Crutchfield, 2000). This new type of
finite automata will be introduced and discussed in detail in the next section.

3. FINITE STOP QUANTUM AUTOMATA

Parallel to the finite state quantum automata discussed in previous section,
we propose a definition of finite stop quantum automata as follows.

Definition 3.1. An n-dimensional finite stop quantum automaton R can be rep-
resented with an eight-tuple R = (H, Sinit, Sterm, �,Q, q0, T ,�), with:

1. An n-dimensional Hilbert space H ;
2. An initial vector Sinit ∈ H , where |Sinit|2 = 1;
3. An operator Sterm projecting elements of H into an m-dimensional sub-

space, 1 ≤ m ≤ n. In practice, we consider it to be an n × m dimensional
matrix of complex numbers with |p|2 ≤ 1, where p is a column vector of
Sterm;

4. A finite set � of input symbols;
5. A finite set Q of stops, an initial stop q0 ∈ Q and a set T ⊆ Q of terminal

stops;
6. A (partial) mapping: � : Q × � × Q → UN,

where UN is a set of unitary matrices. We write it as

� = {δ(q1, x, q2)| if δ(q1, x, q2) is defined and equals to U (q1, x, q2),

which is unitary}
For each input string w = x1x2, . . . , xm, Accept (R, w) = a if and only if

there is a chain of stops in R : q0, q1, . . . , qm, such that qm ∈ T , and for all
j, 0 ≤ j ≤ m − 1, δ(qj , x, qj+1) = U (qj , x, qj+1) ∈ �, and |SinitUwSterm|2 = a,
where

Uw =
m−1∏
j=0

U (qj , x, qj+1)

The quantum language L(R) recognized by R is defined as the following set of
pairs:

L(R) = {(s ∈ �+, Accept (R, s))|s is accepted byR}
Compare this definition of finite stop quantum automata with those given in
literature, e.g. those given in (Ambainis et al., 1999) or (Kondacs and Watrous,
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1997), we see there is a difference that in our definition the stops are not classified
as accepting, rejecting and non-halting. Our definition of stops is more close to
that in traditional finite state automata.

4. RELATIONS BETWEEN THE LANGUAGES ACCEPTED
BY FINITE STATE QUANTUM AUTOMATA
AND FINITE STOP QUANTUM AUTOMATA

Theorem 4.1. For each finite state quantum automaton R, there is a finite stop
quantum automaton R′, which accepts the same language accepted by R.

Proof: In fact, we can construct a “universal” finite stop quantum automaton R′,
which can simulate any finite state quantum automaton by modifying the partial
mapping δ appropriately.

Assume a finite state quantum automaton R = (H, Sinit, Paccept, �,� =
{Ux |∀x ∈ �}) as described in Definitions 2.1 and 2.2 is given. Construct
the finite stop quantum automaton R′ = (H, S ′

init, S
′
term, �′,Q′, q0, T

′,�′) as
follows: S ′

init = Sinit, S ′
term = Paccept, �′ = �, Q′ = {q0, q1}, T ′ = {q1}, �′ =

{δ′(q0, x, q1) = Ux, δ
′(q1, x, q1) = Ux |∀x ∈ �}. The structure of R′ is shown in

Figure 1.
It is easy to see that for any input string w, which is accepted by R with

|SinitUwPaccept|2, the automaton R′ accepts the same w with |S ′
initUwS ′

term|2 , and
vice versa. �

Now we pose a question in another direction: Does there exist an equivalent
finite state quantum automaton to any given finite stop quantum automaton? Let
us first consider the case n = 1.

Lemma 4.1. For one-dimensional Hilbert space, there is a finite stop quantum
automaton R, for which there does not exist any equivalent finite state quantum
automaton R′.

Proof: In case of one-dimensional Hilbert space H1, the initial state (or
stop) Sinit, the projecting state (or stop) Sterm, and the unitary matrices

Fig. 1. “Universal” finite stop quantum automaton.
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are all reduced to some complex number. Consider the one-dimensional
finite stop quantum automaton R = (H1, 1, 1, {x}, {q0, q1, q2}, q0, {q2},� =
{δ(q0, x, q1) = 1, δ(q1, x, q2) = 1}). It is easy to see that

Accept(R, x) = 0, Accept (R, xx) = 1 (6)

If there exists a finite state quantum automaton R′, then R′ should take the
following form:

R′ = (H1, S
′
init, Paccept, {x},�′),

Accept(R′, x) = |S ′
initUxPaccept|2 = |Paccept|2 (7)

Accept(R′, xx) = |S ′
initUxUxPaccept|2 = |Paccept|2

since S ′
init and the unitary matrix Ux must be complex numbers with the absolute

value 1. It is impossible to choose the value of Paccept such that both equations of
(6) are satisfied. �

Now we will generalize the result obtained above to n-dimensional Hilbert
spaces for arbitrary n.

Theorem 4.2. For an n-dimensional Hilbert space of arbitrary positive integer
n, there exists at least one finite stop quantum automaton, for which there is no
equivalent n-dimensional finite state quantum automaton.

We will not prove this theorem directly. Rather, we will prove a more general
and more powerful theorem stated later.

Theorem 4.3. For any n-dimensional Hilbert space of arbitrary positive integer
n, there exists at least one n-dimensional finite stop quantum automaton R, such
that for any positive integer m and m-dimensional Hilbert space, there is no
m-dimensional finite state quantum automaton R′ equivalent to R.

Proof: Given n > 0, construct an n-dimensional finite stop quantum automaton
R as follows: Sinit = 1√

n
(1, 1, . . . , 1), Sterm = 1√

n
(1, 1, . . . , 1)′, � = {x}, Q =

{q0, q1, . . . , qf −1, qf }, q0 is the initial stop, T = {qf }, f > 0, ∀j, 0 ≤ j ≤ f −
1, δ(qj , x, qj+1) = UI , where UI is the identity matrix of degree n, which is also
unitary. The structure of this automaton is shown in Figure 2. �

Fig. 2. An n-dimensional finite stop automaton.
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It is easy to see that R does not accept any string other than xf , which means

Accept(R, xf ) = ∣∣SinitU
f

I Sterm

∣∣2 = |SinitSterm|2 = 1

Accept(R, xj ) = 0, j �= f

If there is an equivalent m-dimensional finite state quantum automaton R′ for
m > 0, then it should have the following form:

S ′
init = (s1, s2, . . . , sm),

Paccept =

 p11 · · · p1k

· · · · · · · · ·
pm1 · · · pmk


 , m ≥ k > 0,

� = {x},
� = {Ux},∣∣S ′

initU
f
x Paccept

∣∣2 = 1,∣∣S ′
initU

j
x Paccept

∣∣2 = 0, for all j �= f.

According to the matrix theory, there must be a unitary matrix V , such that
Ux can be represented in

Ux = V �V −1,

where � is a diagonal matrix:

� =




eiϕ1

eiϕ2

· · ·
eiϕm


 ,

where i is the unit imaginary number.
� is the eigenvalue matrix of Ux . Thus,

Uj
x = V �V −1V �V −1 · · ·V �V −1

= V �jV −1, j > 0

S ′
initU

j
x Paccept = S ′

initV �jV −1Paccept = s1�
j t1

where

s1 = S ′
initV, t1 = V −1Paccept,
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Let

s1 = (s11, s12, . . . , s1m),

t1 =




t11 t12 · · · t1k

t21 t22 · · · t2k

· · · · · · · · · · · ·
tm1 tm2 · · · tmk


 ,

then

s1�
j t1 =

(
m∑

h=1

s1hth1e
jiϕh , . . . ,

m∑
h=1

s1hthke
jiϕh

)
, (8)

Note that i is the unit imaginary number.
In order to satisfy the condition |s1�

j t1|2 = 0 for j �= f , it should be:

∀1 ≤ g ≤ k,

m∑
h=1

s1hthge
jiϕh = 0. (9)

On the other hand, in order to satisfy the condition |s1�
f t1|2 = 1 for j = f ,

there should be:

∃g, 1 ≤ g ≤ k,

m∑
h=1

s1hthge
jiϕh �= 0. (10)

Take this g (if there are more than one g, take any of them), for j = 1, 2, 3, . . .

write down the linear equations as follows:

s11t1ge
iϕ1 + s12t2ge

iϕ2+ · · · +s1mtmge
iϕm = 0

s11t1ge
2iϕ1 + s12t2ge

2iϕ2+ · · · +s1mtmge
2iϕm = 0

· · ·
s11t1ge

(f −1)iϕ1 + s12t2ge
(f −1)iϕ2+ · · · +s1mtmge

(f −1)iϕm = 0 (11)

s11t1ge
f iϕ1 + s12t2ge

f iϕ2+ · · · +s1mtmge
f iϕm = r �= 0

s11t1ge
(f +1)iϕ1 + s12t2ge

(f +1)iϕ2+ · · · +s1mtmge
(f +1)iϕm = 0

· · ·
s11t1ge

(f +p)iϕ1 + s12t2ge
(f +p)iϕ2+ · · · +s1mtmge

(f +p)iϕm = 0

· · ·
To simplify the notation, let s1hthg = ch for all h. Then we can consider the

equation system (11) as one with the set of variables (c1, c2, . . . , cm). So what we
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get is a system with infinitely many linear equations, where only one equation has
a non-zero right side, all other equations have a zero right side.

Furthermore, we let eiϕh = ah, then the coefficient matrix of the equation
system (11) is a matrix with infinitely many rows. It has the following form:

C =




a1 a2 · · · am

a2
1 a2

2 · · · a2
m

a3
1 a3

2 · · · a3
m

· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·




(12)

Construct the determinate of a finite sub-matrix C1 of C:

detC1 = det




a1 a2 · · · am

a2
1 a2

2 · · · a2
m

· · · · · · · · · · · ·
am

1 am
2 · · · am

m


 =

m∏
j=1

aj detC ′
1 (13)

where

C ′
1 =




1 1 · · · 1
a1 a2 · · · am

· · · · · · · · · · · ·
am−1

1 am−1
2 · · · am−1

m


 (14)

We are familiar with this matrix. Its determinate is the so-called Van de
Monde determinate. According to a classical result:

detC ′
1 =

∏
m≥u>v≥1

(au − av) (15)

detC1 =
m∏

j=1

aj

∏
m≥u>v≥1

(au − av) (16)

Therefore, det C1 = 0 if and only if au = av for at least one pair of (au, av)
(We know already that au �= 0 for all u). That means, the rank of C1 is less than
m if and only if au = av for at least one pair of (au, av). It follows that the infinite
matrix C has a rank less than m if and only if au = av for at least one pair of
(au, av).

In order to study the case where au = av for more than one pair of (au, av),
and to determine the exact rank of C in this case, we assume that the m numbers
a1, a2, . . . , am are divided in q groups such that the members in the same group are
equal to each other, and the elements in different groups are mutually different.
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Then we take only one element from each group as a representative. Without
loss of generality we may assume these representatives are the first q elements:
a1, a2, . . . , aq , otherwise we can achieve this by rearranging the columns of C,
since such a rearrangement would not modify its rank. Thus, we have:

C =




 the-first-q-

mutual-different-
columns





 the-last-(m − q)-

columns-which-are-
copies-of-the-first-q





 = (C3 C4) (17)

Based on the result about Van de Monde determinate mentioned earlier and on the
basic theory of matrices, it follows then

rank of C = rank of C3 = q (18)

That means, the rank of C is equal to the maximal number of its mutual different
columns. And each sub-matrix of C with degree q ′ × m, where m ≥ q ′ ≥ q, has
also a rank of q.

With these preparations we are now ready for further discussing the equation
system (11). Starting from the f + 1th equation, we construct a finite system of
m equations as follows:

c1e
(f +1)iϕ1 + c2e

(f +1)iϕ2+ · · · +cme(f +1)iϕm = 0

c1e
(f +2)iϕ1 + c2e

(f +2)iϕ2+ · · · +cme(f +2)iϕm = 0
· · · (19)

c1e
(f +m)iϕ1 + c2e

(f +m)iϕ2+ · · · +cme(f +m)iϕm = 0

Then we can consider (19) as one linear equation system with the set of
variables (c1, c2, . . . , cm) and the coefficient matrix of the equation system (19) is
as follows:

C ′′ =




e(f +1)iϕ1 e(f +1)iϕ2 · · · e(f +1)iϕm

e(f +2)iϕ1 e(f +2)iϕ2 · · · e(f +2)iϕm

· · · · · · · · · · · ·
e(f +m)iϕ1 e(f +m)iϕ2 · · · e(f +m)iϕm




det C ′′ =
m∏

j=1

e(f +1)iϕj · det C ′′′

where

C ′′′ =




1 1 · · · 1

eiϕ1 eiϕ2 · · · eiϕm

· · · · · · · · · · · ·
e(m−1)iϕ1 e(m−1)iϕ2 · · · e(m−1)iϕm


 (20)
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Let eiϕj be aj , it is easy to see that the determinate of (20) is a Van de Monde
determinate. We differentiate two cases.

Case 1. The rank of C is m, then the rank of the coefficient matrix of (19) is
also m. It follows then that (19) has only trivial solutions (all variables have the
value zero). That means, for all h, ch = 0. Then we must have:

c1e
f iϕ1 + c2e

f iϕ2 + · · · + cmef iϕm = 0

which contradicts (11).
Case 2. The rank of C is q < m. Consider the equation system consisting of

m equations starting from the f th one until the (f + m − 1)th one:

c1e
f iϕ1 + c2e

f iϕ2+ · · · +cmef iϕm = r �= 0

c1e
(f +1)iϕ1 + c2e

(f +1)iϕ2+ · · · +cme(f +1)iϕm = 0 (21)
· · ·

c1e
(f +m−1)iϕ1 + c2e

(f +m−1)iϕ2+ · · · +cme(f +m−1)iϕm = 0

From discussions made earlier we can conclude that the rank q of C is less
than m, if and only if the maximal number of different columns in C is q < m.
Furthermore, it is equal to q if and only if the maximal number of different columns
of the coefficient matrix of (21) is equal to q. Furthermore, it is equal to q if and
only if the rank of this coefficient matrix (which is of type of C ′′ discussed earlier)
is q.

On the other hand, we consider the sub-matrix C ′′′′ formed by deleting the
first row from the coefficient matrix. (Obviously, C ′′′′ is of type of C1. Note also
m − 1 ≥ q.) Since r �= 0 we know that the extended matrix of (21), obtained by
adding the right side constants of (21) to the coefficient matrix, has the rank q + 1.
From the theory of linear equation systems we know that it is impossible that the
system (21) has a solution.

In summary, we have proved that the m-dimensional unitary matrices needed
for constructing an equivalent finite state quantum automaton do not exist. The
theorem is thus proved. �

Note that what we have proved is actually more than it was said in the
statement of Theorem 4.2. We have actually proved the following theorem.

Theorem 4.4. If it is additionally prescribed that to each input symbol x there
corresponds only one unitary matrix Ux (independent of the stop the automaton
is in), then the conclusion of Theorem 4.2 is still valid.
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5. THE HIERARCHY OF FINITE STATE QUANTUM LANGUAGES

Definition 5.1. The class of languages accepted by finite state quantum automata
is called finite state quantum languages. The class of languages accepted by n-
dimensional finite state quantum automata is called n-dimensional finite state
quantum languages.

Theorem 5.1. For 0 < m < n, the m-dimensional finite state quantum lan-
guages form a subclass of n-dimensional finite state quantum languages.

Proof: Assume a finite state quantum automaton R is given by:

(1) Sinit = (a1, a2, . . . , am),

(2) Paccept =
( b11 · · · b1k

· · · · · · · · ·
bm1 · · · bmk

)
1 ≤ k ≤ m

(3) � = {xj |1 ≤ j ≤ g},
(4) � = (Ux |x ∈ �)

Construct a finite state quantum automaton R′ as follows:

S ′
init = ([Sinit][n − m zeros]),

P ′
accept =


 Paccept�[

(n − m)-rows
of-zero-elements

]


�′ = �,

�′ =


U ′

x =




Ux

[
zero-
elements

]
[

zero-
elements

] [
(n − m)-dimensional-
identity-matrix

]

 |x ∈ �′




Then for an arbitrary input string w = x1x2 . . . xk we have

Accept (R′, w) = |S ′
initU

′
x1

U ′
x2

, . . . , U ′
xk

P ′
accept|2

=

∣∣∣∣∣∣∣∣∣
(Sinit, 0, · · · , 0)




Ux1 0

1 0 0

0 0 · · · 0

0 0 1


 · · ·




Uxk
0

1 0 0

0 0 · · · 0

0 0 1




(
Paccept

0(n − m, k)

)∣∣∣∣∣∣∣∣∣

2
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=

∣∣∣∣∣∣∣∣
(Sinit, 0, · · · , 0)




Ux1Ux2 · · · Uxk
0

. . .

0 1




(
Paccept

0(n − m, k)

)∣∣∣∣∣∣∣∣

2

= ∣∣(SinitUx1Ux2 . . . Uxk
Paccept, 0, · · · , 0

∣∣2

= Accept(R, w)

where 0(n − m, k) denotes a matrix of degree (n − m) × k with zero elements
only. �

Lemma 5.1. The one-dimensional finite state quantum languages form a proper
subset of the two-dimensional finite state quantum languages.

Proof: Remember that in case of one-dimensional Hilbert space, the unitary
matrices are unit complex numbers in form of eiϕ . The initial vector Sinit is also a
unit complex number in form of eiψ . Then

Accept(R, w) = |Sinite
ϕ1eϕ2 . . . eϕn Paccept|2 = |Paccept|2

This is evidence that the acceptance degree is the same for all input strings. In
another word, these automata do not differentiate between different input strings.

Now we construct a two-dimensional finite state quantum automaton R′ with

Sinit = 1√
2
(1, 1),

Paccept = 1√
2
(1, 1)′

� = {x, y},
� =

{
Ux =

(
1 0
0 1

)
, Uy =

(
1 0
0 −1

)}

then

Accept(R, x) = 1,

Accept(R, y) = 0

Obviously, there is no one-dimensional finite state quantum automaton, which can
have this behavior. �

We will now generalize this result to the case of arbitrary n-dimensional finite
state quantum automaton.

Definition 5.2. The language L(R) accepted by a finite state quantum automaton
R is said to possess the n-vector property, if

{(x, 0), (x2, 0), . . . , (xn−1, 0), (xn, 1)} ⊆ L(R) (22)
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holds, where x ∈ � is some input symbol of R. In words, possessing the n-vector
property means that R rejects all strings xj , 1 ≤ j ≤ n − 1, but accepts xn.

Theorem 5.2. For each n > 0, there exists an n-dimensional finite state quantum
automaton, whose language possesses the n-vector property. On the other hand,
there is no n − 1-dimensional finite state quantum automaton, whose language
possesses the n-vector property.

Proof: We go ahead along the similar idea of the proof of Theorem 4.3. In order
to determine the structure of the n-dimensional automaton R, we list now the
equations, which must be satisfied by R. They are

|SinitUxPaccept|2 = 0,∣∣SinitU
2
x Paccept

∣∣2 = 0,

· · · (23)∣∣SinitU
n−1
x Paccept

∣∣2 = 0,∣∣SinitU
n
x Paccept

∣∣2 = 1,

where Sinit is an n-dimensional normalized vector, Ux is n-dimensional unitary
matrix, Paccept is a matrix of degree n × k, 1 ≤ k ≤ n.

With the technique used in the proof of theorem 4.3, we obtain a system of n

linear equations:

s11t1ge
iϕ1 + s12t2ge

iϕ2+ · · · +s1ntnge
iϕn = 0

s11t1ge
2iϕ1 + s12t2ge

2iϕ2+ · · · +s1ntnge
2iϕn = 0

· · · (24)

s11t1ge
(n−1)iϕ1 + s12t2ge

(n−1)iϕ2+ · · · +s1ntnge
(n−1)iϕn = 0

s11t1ge
niϕ1 + s12t2ge

niϕ2+ · · · +s1ntnge
niϕn = r �= 0

where g is some fixed number between 1 and n. For the meanings of s1j , tjg

and ejiϕk , 1 ≤ j ≤ n, 1 ≤ k ≤ n, please refer to the proof of Theorem 4.3. The
equation system (24) looks somehow similar to equation system (11), but (24) is
a system with only finitely many equations, while (11) is an infinite system.

Let s1j tjg = cj , 1 ≤ j ≤ n.

If we can find a solution for the cj , then we have also a solution for the s1j

and the tjg , and thus a solution for the wanted n-dimensional automaton R. For
finding the solution, we first have to determine the coefficient matrix. Here we
see that we have some degree of freedom. Namely, we can assign arbitrary values
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to the ϕj in the way that for j �= k, ϕj �= ϕk . From the theory of Van de Monde
determinate we know that the rank of (24) is equal to n. Therefore, system (24)
has a unique solution for the cj , where the cj are complex numbers. Let:

s1j = 1√
n

tjg = √
ncj (25)

we get an n-dimensional finite state quantum automaton R with the required
n-vector property.

On the other hand, if there were an n − 1-dimensional finite state quantum
automaton R′, whose language possesses the n-vector property, then R′ must
satisfy the following equations:

|S ′
initU

′
xP

′
accept|2 = 0,

|S ′
initU

′2
x P ′

accept|2 = 0,

· · · (26)

|S ′
initU

′n−1
x P ′

accept|2 = 0,

|S ′
initU

′n
x P ′

accept|2 = 1,

where S ′
init is an n − 1-dimensional vector, U ′

x is an n − 1-dimensional unitary
matrix, P ′

accept is a matrix of degree (n − 1) ×k, 1 ≤ k ≤ n − 1.
By making use of the technique of proving Theorem 4.3, we get the following

system of equations:

s11t1ge
iϕ1 + s12t2ge

iϕ2 + · · · + s1,(n−1)t(n−1),ge
iϕn−1 = 0

s11t1ge
2iϕ1 + s12t2ge

2iϕ2 + · · · + s1,(n−1)t(n−1),ge
2iϕn−1 = 0

· · · (27)

s11t1ge
(n−1)iϕ1 + s12t2ge

(n−1)iϕ2 + · · · + s1,(n−1)t(n−1),ge
(n−1)iϕn−1 = 0

s11t1ge
niϕ1 + s12t2ge

niϕ2 + · · · + s1,(n−1)t(n−1),ge
niϕn−1 = r ′ �= 0

The equation system (27) looks very much like equation system (24). But they
are different. The former has only n − 1 additive elements on the left side of
each of its equations, while the latter has n such elements. For fixed coefficients
ejiϕk , equation system (27) has n − 1 variables in form of s1j tjg , whose values are
to be determined, while equation system (24) has n variables. This difference is
important, which leads to completely different results.

Considering the first n − 1 equations of (27), we differentiate two cases.

Case 1. The rank of its coefficient matrix is n − 1, then there is only a trivial
solution: ∀j, s1j tjg = 0. This contradicts the nth equation of (27).
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Case 2. The rank of its coefficient matrix is q < n − 1, then consider a new
equation system, which consists of the last n − 1 equations of (27). Based on a
similar idea of reasoning as in the proof of Theorem 4.3, the coefficient matrix of
this equation system is q, and the rank of the extended coefficient matrix (with
the constants on the right sides additionally) is q + 1. Thus, this equation system
is inconsistent and has no solutions.

This proves that an n − 1-dimensional finite state quantum automaton satis-
fying the requirements (26) cannot exist. �

Corollary 5.1. For each n > 0, the n-dimensional finite state quantum languages
form a proper subset of the n + 1-dimensional finite state quantum languages.

The hierarchy of quantum language inclusion is shown in Figure 3.

6. QUANTUM AUTOMATA WITH COMPLEX ACCEPTANCE DEGREES

Many physical quantities are defined or represented in complex values. For
example, in electrodynamics, the phase of an electrical current is represented with
a complex value. In our case, we have to note that the Hilbert space itself is
a complex linear space, on which scalar products can be defined. Therefore, it
should be meaningful to define complex valued acceptance degrees for quantum
automata on Hilbert Space.

Fig. 3. The hierarchy of quantum language inclusion.
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Definition 6.1. A complex valued finite state quantum automaton defined on
an n-dimensional Hilbert space, called n-dimensional cfsq, or simply cfsq, is
represented with a quintuple R = (H, Sinit, Paccept, �,�), with the following:

1. An n-dimensional Hilbert space H .
2. An initial vector Sinit ∈ H , where |Sinit|2 = 1.
3. An operator Paccept, which is a complex matrix of order n × m, 1 ≤ m ≤ n,

projecting elements of H into a sub-space of H .
For any vector a of H ,

Paccept : a → aPaccept

Besides, each column p of Paccept is subject to the limitation |p|2 ≤ 1;
4. A finite input alphabet �.
5. For each symbol x ∈ �, there corresponds an n-dimensional unitary ma-

trix Ux ∈ �.
6. Let Uw = Ux1Ux2 . . . Uxn

, where w = x1x2 . . . xn, xj ∈ �, 1 ≤ j ≤ n

The acceptance degree of w by R is defined as:

Accept(R, w) = SinitUwPaccept,

which is an m-dimensional complex vector.
7. The quantum language recognized by R is defined as the set of pairs

(w, fR(w)), where w ∈ �∗, fR(w) = Accept(R, w).

It follows from this definition that almost every thing of the definition of finite
state quantum automata is kept unchanged except the acceptance degree, which
can take the value of a complex vector.

Accordingly, we give the definition of complex valued finite stop quantum
automata on Hilbert spaces.

Definition 6.2. A complex valued finite stop quantum automaton defined on an n-
dimensional Hilbert space, called n-dimensional cftq, or simply cftq, is represented
as an eight-tuple R = (H, Sinit, Sterm, �,Q, I, T ,�), with the following:

1. An n-dimensional Hilbert space H .
2. An initial vector Sinit ∈ H , where |Sinit|2 = 1.
3. An operator Sterm, which is a complex matrix of order n × m, 1 ≤ m ≤ n,

projecting elements of H into an m-dimensional sub-space of H .
For any vector a of H ,

Sterm : a → aSterm

Besides, each column p of Sterm is subject to the limitation |p|2 ≤ 1.
4. A finite input alphabet �.
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5. A finite set Q of stops, with I ⊂ Q the set of initial stops, I = {q0},
T ⊂ Q the set of terminal stops.

6. A set � of transition functions,

� = {δ(q1, x, q2) = U (q1, x, q2)|q1, q2 ∈ Q, x ∈, U is an n-dimensional

unitary matrix},
where δ(q1, x, q2) is a partial mapping from Q × � × Q to the set of
n-dimensional unitary matrices. A triple (q1, x, q2) is called a transition.

Thus, we have the following definition of the quantum language:

1. A string s = x1, x2, . . . , xn, xj ∈ �, 1 ≤ j ≤ n, is said to be ac-
cepted by a cftq R if there is a chain of transitions w =
(q0, x1, q1), (q1, x2, q2), . . . , (qn−1, xn, qn), where q0 ∈ I, qn ∈ T .

2. The acceptance degree of string s by R is defined as:
Accept (R, s) = {SinitUwSterm|w is a chain of transitions (henceforth

called a path accepting s) of R and

Uw = U (q0, x1, q1)U (q1, x2, q2) · · · U (qn−1, xn, qn)}.
3. The quantum language recognized by R is defined as the set of pairs

{(s, Accept (R, s))|s ∈ �+, s accepted by R}.

Definition 6.3. Let R be a cftq. R is called deterministic if for each stop q1

and input symbol x ∈ �, there is at most one stop q2 and one unitary matrix
U (q1, x, q2), such that the mapping

δ(q1, x, q2) → U (q1, x, q2)

is well defined.
It is easy to see that all theorems (from Theorem 2.1 to Corollary 5.1)

given earlier remain valid for complex valued finite state and finite stop automata
after a slight modification of the proof procedures. Here we limit the projection
operator Paccept respectively Sterm to be an n × 1 complex vector, i.e. we limit the
projection sub-space to be one dimensional, since once the theorem is proved for
one-dimensional sub-space, then its validity is obvious for any m-dimensional
sub-space with 1 ≤ m ≤ n.

Definition 6.4. A deterministic cftq is called invariant if for each input symbol
x ∈ �, there is at most one unitary matrix U, such that for any stops q1 and
q2, whenever the transition function δ(q1, x, q2) is defined, its value is always
U (q1, x, q2). Otherwise, it is called variant (one input symbol may correspond to
several unitary matrices). In the sequel, we denote the former with icftq, and the
latter with vcftq.
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It is obvious that the set of all deterministic cftq forms a subset of the set of
all cftq. But the following result is not obvious.

Theorem 6.1. The set of all icftq forms a proper subset of the set of all vcftq.

Proof: We have only to construct a vcftq R whose language L(R) cannot be
accepted by any icftq. Let

Sinit = 1√
n

(1, 1, . . . , 1)

Sterm = 1√
n




1
...
1




In case of n = 1, every unitary matrix is a complex number of the form
eiϕ . Let Sinit = Sterm = 1 for R. The other components of R are as fol-
lows: � = {x}, Q = {q0, q1, q2}, I = {q0}, T = {q1, q2}, � = {δ(q0, x, q1) =
eiϕ1 , δ(q1, x, q2) = eiϕ2 , δ(q2, x, q2) = eiϕ3}. Therefore,

Accept(R, x) = eiϕ1

Accept(R, xx) = ei(ϕ1+ϕ2)

Accept(R, xxx) = ei(ϕ1+ϕ2+ϕ3)

If there is an equivalent icftq R′, then there must be a complex number eiϕ , such
that the following equations hold:

Accept(R, x) = Sinite
iϕSterm = eiϕ1

Accept(R, xx) = Sinite
2iϕSterm = ei(ϕ1+ϕ2)

Accept(R, xxx) = Sinite
3iϕStermei(ϕ1+ϕ2+ϕ3)

According to definition, Sinit = eiϕ4 for some ϕ4, Sterm = reiϕ5 for some ϕ5 and 0
≤ r ≤ 1. The case r < 1 is impossible because of the values of the right sides.
That means, the equations are equal to the following:

ϕ4 + ϕ + ϕ5 = ϕ1

ϕ4 + 2ϕ + ϕ5 = ϕ1 + ϕ2

ϕ4 + 3ϕ + ϕ5 = ϕ1 + ϕ2 + ϕ3

They are valid in the sense of mod(2π ). We can remove this limitation by making
the ϕ1, ϕ2, ϕ3 small enough. By subtracting the first equation from the second one,
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we get ϕ = ϕ2. By subtracting the second equation from the third, we get ϕ = ϕ3.
This offers a contradiction if we let ϕ2 �= ϕ3.

That means in case of n = 1 it is impossible that an equivalent icftq R′ exits.
Now we consider the cases n > 1. First we construct a vcftq R as follows:

Sinit = 1√
n

(1, 1, . . . , 1)

Sterm = 1√
n




1
...
1




� = {x}

Q = {q0, q1, q2}, I = {q0}, T = {q1, q2}
� = {δ(q0, x, q1) = U1, δ(q1, x, q2) = U−1

1 , δ(q2, x, q1) = U1}
In case of n = 2:

Sinit = 1√
2

(1, 1)

Sterm = 1√
2

[
1
1

]

Let the unitary matrix U1 be:

U1 =
[

eiϕ 0
0 e−iϕ

]

where ϕ = arc cos 1/2, thus

Accept(R, x) = SinitU1Sterm = 1

2
(1, 1)

[
eiϕ 0
0 e−iϕ

] [
1
1

]
= 1

2

Accept(R, xx) = 1

For n > 2, let the unitary matrix U1 be the following diagonal matrix:

U1 =




1
1

e2πi/(n−1)

e4πi/(n−1)

· · ·
e2(n−2)πi/(n−1)
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Obviously, R does not accept any input string other than xf (f is an arbitrary
positive integer). For xf , R accepts it with the acceptance degree:

Accept(R, xf ) = SinitU1Sterm = 1/n + 1/n(1 + e2πi/(n−1) + e4πi/(n−1)

+ · · · + e2(n−2)πi/(n−1)) = 1/n if f is odd

Accept(R, xf ) = SinitUISterm = 1 if f is even

where UI is the n-dimensional identity matrix.
This automaton is illustrated in Figure 4. Summarizing the discussion made

earlier, we are now prepared to treat all cases n ≥ 2 in a unique way.
If there were an icftq R′, which behaves in the same way as R, then there

must be an n-dimensional unitary matrix U2, such that

Accept(R′, xf ) = SinitU
f

2 Sterm = 1/n if f is odd

Accept(R′, xf ) = SinitU
f

2 Sterm = 1 if f is even

Transform U2 in diagonal form:

U2 = V �V −1

where V is a unitary matrix and � is a diagonal unitary matrix:

� =




eiϕ1

eiϕ2

· · ·
eiϕn−1

eiϕn




Since

U
f

2 = V �f V −1

Let

sv = SinitV = (s1, s2, . . . , sn)

Fig. 4. A variant complex valued finite stop quantum automaton.
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vt = V −1Sterm =




t1
t2
· · ·
tn−1

tn




we have

Accept(R′, xf ) = SinitU
f

2 Sterm =
n∑

j=1

sj tj e
if ϕj = 1/n, if f is odd (28)

Accept(R′, xf ) = SinitU
f

2 Sterm =
n∑

j=1

sj tj e
if ϕj = 1, if f is even (29)

Consider the sj tj as variables, and the eif ϕj as coefficients, j = 1, 2, . . . , n, f =
1, 2, 3, . . ., then (28) and (29) are two systems with infinitely many linear equations
each.

For all h, let eiϕh = ah, then the coefficient matrix of (28) is the following
infinite matrix:

C =




a1 a2 · · · an

a3
1 a3

2 · · · a3
n

a5
1 a5

2 · · · a5
n

· · · · · · · · · · · ·




Construct a sub-matrix

C1(n) =




a1 a2 · · · an

a3
1 a3

2 · · · a3
n

· · · · · · · · · · · ·
a2n−1

1 a2n−1
2 · · · a2n−1

n




let

st = (s1t1, s2t2, . . . , sntn)

be a vector. Consider the equation system


n∑
j=1

sj tj e
if ϕj = 1/n, f = 1, 3, 5, . . . , 2n − 1


 (30)
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and the equation system


n∑
j=1

sj tj e
if ϕj = 1, f = 2, 4, 6, . . . , 2n


 (31)

Calculate the coefficient determinate of the equation system (30):

detC1(n) = det




a1 a2 · · · an

a3
1 a3

2 · · · a3
n

· · · · · · · · · · · ·
a2n−1

1 a2n−1
2 · · · a2n−1

n





 n∏

j=1

aj


 det C ′

1(n)

where

C ′
1(n) =




1 1 · · · 1

a2
1 a2

2 · · · a2
n

· · · · · · · · · · · ·
a2n−2

1 a2n−2
2 · · · a2n−2

n




Let bi = a2
i , then C ′

1 is a Van de Monde determinate with respect to bi .
Therefore,

det C ′
1(n) =

∏
n≥u>v≥1

(
a2

u − a2
v

)
Thus,

det C1(n) =
n∏

j=1

aj

∏
n≥u>v≥1

(
a2

u − a2
v

)

Therefore, det C1(n) = 0 if and only if there is at least one pair (a2
u, a

2
v ) with

a2
u = a2

v (we know already that for all au, au �= 0). That means, the rank of C1(n)
is smaller than n, if and only if there exists a pair (a2

u, a
2
v ) with a2

u = a2
v . It follows

then: the rank of the infinite matrix C is smaller than n, if and only if there is a
pair (a2

u, a
2
v ) with a2

u = a2
v .

Assume there exist several such pairs (a2
u, a

2
v ) with a2

u = a2
v . Assume there are

altogether m mutual different a2
u. Without loss of generality, assume these are the

first m elements: a2
1 , a2

2, . . . , a
2
m. Consider the following system of m equations:


m∑

j=1

cj e
if ϕj = 1/n, f = 1, 3, 5, . . . , 2m − 1


 (32)

where the numbers cj are the results of merging equal eif ϕj items in the equations.
Some of them, but not all of them, may be zero, because none of the right sides is
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equal to zero. Without loss of generality we still denote the number of non-zero
cj (of each equation) with m. Note that there must be equally many non-zero c′

j

in all equations. In this way, we get a reduced system of linear equations, where
we consider the eif ϕj as coefficients and the cj as variables. Since now all ϕj are
mutually different, the Van de Monde determinate formed by these coefficients
has a non-zero value. Consider the cj as solutions of this equation system, we
have the result:

cj = 1

n

det




eiϕ1 · · · 1 · · · eiϕm

e3iϕ1 · · · 1 · · · e3iϕm

· · · · · · · · · · · · · · ·
e(2m−3)iϕ1 · · · 1 · · · e(2m−3)iϕm

e(2m−1)iϕ1 · · · 1 · · · e(2m−1)iϕm




det




eiϕ1 · · · eiϕj · · · eiϕm

e3iϕ1 · · · e3iϕj · · · e3iϕm

· · · · · · · · · · · · · · ·
e(2m−3)iϕ1 · · · e(2m−3)iϕj · · · e(2m−3)iϕm

e(2m−1)iϕ1 · · · e(2m−1)iϕj · · · e(2m−1)iϕm




= 1

n

det C ′
1(m, j )

eiϕj det C ′
1(m)

where C ′
1(m, j ) is the result of replacing all elements of the j th column of C ′

1(m)
with 1.

Now we calculate the coefficient determinate of the equation system (31).
Its coefficient matrix is as follows:

C2(n) =




a2
1 a2

2 · · · a2
n

a4
1 a4

2 · · · a4
n

· · · · · · · · · · · ·
a2n

1 a2n
2 · · · a2n

n




DetC2(n) = Det




a2
1 a2

2 · · · a2
n

a4
1 a4

2 · · · a4
n

· · · · · · · · · · · ·
a2n

1 a2n
2 · · · a2n

n


 =


 n∏

j=1

a2
j


 Det C ′

1(n)

Thus, we can repeat the discussion made earlier and get the following equation
system: 


m∑

j=1

c′
j e

if ϕj = 1, f = 2, 4, 6, . . . , 2m


 (33)
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Note that the c′
j in equation system (33) are just the same as the cj in equation

system (32). But here they are calculated with different rules, namely:

c′
j =

det




e2iϕ1 · · · 1 · · · e2iϕm

e4iϕ1 · · · 1 · · · e4iϕm

· · · · · · · · · · · · · · ·
e(2m−2)iϕ1 · · · 1 · · · e(2m−2)iϕm

e2miϕ1 · · · 1 · · · e2miϕm




det




e2iϕ1 · · · e2iϕj · · · e2iϕm

e4iϕ1 · · · e4iϕj · · · e4iϕm

· · · · · · · · · · · · · · ·
e(2m−2)iϕ1 · · · e(2m−2)iϕj · · · e(2m−2)iϕm

e2miϕ1 · · · e2miϕj · · · e2miϕm




= det C ′
1(m, j )

e2iϕj det C ′
1(m)

= ncj

eiϕj

This shows that the c′
j are not equal to the cj , which is a contradiction. Thus, we

have proved that there is no icftq R′ equivalent to the given vcftq R. �

Theorem 6.2. For any n > 0, the n-dimensional icftq languages form a proper
subset of the n + 1-dimensional icftq languages.

Proof: It is enough to consider the case where Sterm is a one-dimensional complex
vector.

First we study the case of n = 1. We build a two-dimensional icftq R2 as
follows. Let

R2 = (H2, Sinit, Sterm, �,Q, I, T ,�),

where

Sinit = 1√
2

(1, 1)

Sterm = 1√
2

[
1−2i

4i

1+2i
−4i

]

� = {x}
Q = {q0, q1, q2}, I = {q0}, T = {q1, q2}

� = {Ux}, where Ux =
[

ei π
2 0

0 e−i π
2

]
The initial conditions are fulfilled, because

|Sinit|2 = 1

|Sterm|2 = 5

16
< 1
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|SinitSterm| =
√

5

4
< 1

Now we calculate the acceptance degrees.

Accept(R2, x) = SinitUxSterm = 1

4

Accept(R2, xx) = SinitUxUxSterm = 1

2

Assume there were a one-dimensional icftq R′
1, which has the same functions as

R2 does. That means:

Accept(R′
1, x) = 1

4

Accept(R′
1, xx) = 1

2

So

|Accept(R′
1, x)| = 1

4

|Accept(R′
1, xx)| = 1

2

Since each one-dimensional unitary matrix is a complex number in form of eiϕ ,
and since Sinit and Sterm must be also complex numbers in form of eiϕ1 and r eiϕ2 ,
respectively, where 0 ≤ r ≤ 1. Thus,

|Accept(R′
1, x)| = |eiϕ1eiϕreiϕ2 | = r

|Accept(R′
1, xx)| = |eiϕ1e2iϕreiϕ2 | = r

It is impossible that r equals to 1/2 and 1/4 at the same time. That means, it
is impossible that an icftq R′

1 equivalent to R2 exists.
Now we consider cases of n > 1. Build an n + 1-dimensional icftq Rn+1 as

follows:

Rn+1 = (Hn+1, Sinit, Sterm, �,Q, I, T ,�),

where

� = {x}
Q = {q0, q1, q2, . . . , qn, qn+1}, I = {q0}, T = {q1, q2, . . . , qn, qn+1},

� = {Ux},
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where

Ux =




eiϕ1

eiϕ2

· · ·
eiϕn

eiϕn+1


 , where for j �= k, eiϕj �= eiϕk

Consider the following system consisting of n + 1 linear equations:

n+1∑
j=1

sj tj e
kiϕj = a, a > 0, 1 ≤ k ≤ n

n+1∑
j=1

sj tj e
(n+1)iϕj = 2a (34)

We calculate the coefficient determinate of system (34) based on the Van de
Monde rule:

DetC(n + 1, 1, ϕ) = det




eiϕ1 eiϕ2 · · · eiϕn+1

e2iϕ1 e2iϕ2 · · · e2iϕn+1

· · · · · · · · · · · ·
e(n+1)iϕ1 e(n+1)iϕ2 · · · e(n+1)iϕn+1




=
n+1∏
j=1

eiϕj det C(n + 1, 0, ϕ)

=
n+1∏
j=1

eiϕj

∏
1≤g<h≤n

(eiϕh − eiϕg )

This is not equal to zero because we have assumed that the eiϕj are mutually
different. Therefore, the linear system (34) is uniquely solvable. By solving the
equation system, we get a solution for all cj = sj tj .

Note that it is possible that the values of |cj | are not small enough, such that the
initial conditions |Sinit|2 = 1, |Sterm|2 ≤ 1 do not necessary hold. But we can let the
constant a small enough, such that the condition |c1|2 + |c2|2 + · · · + |cn|2 = b is
fulfilled for some b ≤ 1. The constant b does not equal to zero because otherwise all
cj would be zero and the constant a on the right sides of the equation system would
be also zero, which contradicts the assumption. Now let Sinit = [s1, s2, . . . , sn],
Sterm = [t1, t2, . . . , tn],

For all j , let sj = cj√
b
, tj = √

b, then

|SinitSterm|2 = |s1t1|2 + |s2t2|2 + · · · + |sntn|2 = |c1|2 + |c2|2 + · · · + |cn|2

= b ≤ 1, |Sinit|2 = 1, |Sterm|2 = b2 ≤ 1
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Thus, all three conditions are fulfilled.
If there were an n-dimensional icftq, say Rn,, which is equivalent to Rn+1,

then we must have: Rn, = (Hn, Ŝinit, Ŝterm, �̂, Q̂, Î , T̂ , �̂) where �̂ = �, �̂ =
{Ûx} such that

ŜinitÛ
n
x Ŝterm = a, 1 ≤ k ≤ n

ŜinitÛ
n+1
x Ŝterm = 2a, (35)

where Ŝinit is an n-dimensional complex vector and Ŝterm is a transposed n-
dimensional complex vector. Both of them should satisfy the initial conditions.
Ûx is a unitary matrix of order n. Let

Ûx = V �V −1,

where V is unitary, � is unitary and diagonal:

� =




eiφ1

eiφ2

· · ·
eiφn


 (36)

Let S̃init = ŜinitV = (s1, s2, . . . , sn),

S̃term = V −1Ŝterm = (t1, t2, . . . , tn)′

We get the following linear system of equations:

n∑
j=1

sj tj e
kiφj = a, 1 ≤ k ≤ n

n∑
j=1

sj tj e
(n+1)iφj = 2a (37)

Consider the first n equations of (37). Their coefficient determinate is:

det C(n, 1, ϕ) = det


 eiφ1 · · · eiφn

· · · · · · · · ·
eniφ1 · · · eniφn




=
n∏

j=1

eiφj

∏
1≤g<h≤n

(eiφh − eiφg )

Since we are not sure whether there are some eiφj mutual equal. We must assume
a number m of mutually unequal eiφj with m ≤ n. Merge the equal eiφj together
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we get a reduced form of system (37):

m∑
j=1

c′
j e

kiφj = a, 1 ≤ k ≤ n

m∑
j=1

c′
j e

(n+1)iφj = 2a (38)

where c′
j are the new coefficients produced by merging the terms eiφh .

m = 1 is impossible, because this would lead to

|c′
j | = a by considering the first n equations, and

|c′
j | = 2a by considering the n + 1th equation,

This is a contradiction because a �= 0.
For m > 1 we consider the system consisting of the last m ones of the first n

equations of the equation system (38):

m∑
j=1

c′
j e

kiφj = a, n − m + 1 ≤ k ≤ n (39)

The coefficient determinate of the system (39) is:

det C(m, n − m + 1, φ) =
m∏

j=1

e(n−m+1)iφj det C(m, 0, φ)

=
m∏

j=1

e(n−m+1)iφj det




1 1 · · · 1
eiφ1 eiφ2 · · · eiφm

· · · · · · · · · · · ·
e(m−1)iφ1 e(m−1)iφ2 · · · e(m−1)iφm




which is not equal to zero. Therefore, we can represent the solutions of this
equation system as follows:

c′
j = det C(m, n − m + 1, j, a, φ)

det C(m, n − m + 1, φ)

where the matrix C(m, n − m + 1, j, a, φ) is obtained by replacing all elements
of the j th column of the matrix C(m, n − m + 1, φ) with a.

Now consider a new system consisting of the last m − 1 equations of the first
n equations of (38) and the last equation of (38).

m∑
j=1

c′
j e

kiφj = a, n − m + 2 ≤ k ≤ n
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m∑
j=1

c′
j e

(n+1)iφj = 2a (40)

The coefficient determinate of (40) is

det C(m, n − m + 2, φ) =
m∏

j=1

e(n−m+2)iϕj det C(m, 0, φ)

Consider the c′
j as variables and solve the equation system (40). Denote the

solutions with c′′
j , we have

c′′
j = det C(m, n − m + 2, j, (a, 2a), φ)

det C(m, n − m + 2, φ)
(41)

where C(m, n − m + 2, j, (a, 2a), φ) is that matrix we obtain when we replace
all elements of the j th column of the matrix C(m, n − m + 2, φ) with a in the
first m − 1 rows and 2a in the last row. Then

c′′
j = det C(m, 0, j, (a, 2a), φ)

e(n−m+2)iφj det C(m, 0, φ)
(42)

Consider the following difference:

e(n−m+1)iφj det C(m, 0, φ)[c′′
j − c′

j ]

= 1

eiφj
(det C(m, 0, j, a, φ) + det C(m, 0, j, (0, a), φ)) − det C(m, 0, j, a, φ)

= a

eiφj
(det C(m, 0, j, 1, φ) + det C(m, 0, j, (0, 1), φ)) − det C(m, 0, j, a, φ)

= a

eiφj


 ∏

1≤g<h≤m,

φj =0

(eiφh − eiφg ) + (−1)j+m
∏

1≤g<h≤m,

g �=j,h�=j

(eiφh − eiφg )




− a
∏

1≤g<h≤m,

φj =0

(eiφh − eiφg )

= a

eiφj

∏
1≤g<h≤m,

g �=j,h�=j

(eiφh − eiφg )


 ∏

j<h≤m

(eiφh − 1)
∏

1≤g<j

(1 − eiφg )

+ (−1)j+m − eiφj

∏
j<h≤m

(eiφh − 1)
∏

1≤g<j

(1 − eiφg )
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Fig. 5. The hierarchy of complex valued quantum language inclusion.

We will prove that the right side is not equal to zero. If it were zero, then we
would have the equation:∏

j<h≤m

(eiφh − 1)
∏

1≤g≤j

(1 − eiφg ) = (−1)j+m+1 (43)

Denote the left side of (43) with E(j ), then

E(2)

E(1)
= (1 − eiφ2 )

(eiφ1 − 1)
= −1

That would mean:

eiφ1 = eiφ2

which contradicts our assumption of m mutually different eiφj . �

The hierarchy of quantum language inclusion discussed earlier is shown in
Figure 5.

7. RELATED WORKS

It has been always an interesting problem of studying the relationships be-
tween languages accepted by different kinds of automata. The research on relations
between formal languages dates back at least to Turing (1936), when he published
his fundamental paper on Turing machines. It was an early result that the languages
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accepted by Turing machines, called recursively enumerable languages, with one
or multiple tapes, are identical. Further, Shannon proved that any Turing machine
with m input symbols and n internal states can be simulated by another one with
only two input symbols and 8mn states, or one with two states and 4mn + m input
symbols (Shannon, 1956). Chomsky (1956, 1959) has studied the hierarchy of
formal grammars. Since it was shown that there exists a correspondence between
grammars and automata at different levels of this hierarchy, e.g. (Chomsky, 1959;
Chomsky and Miller, 1958; Kuroda, 1964), the hierarchy of formal grammars
presents also a hierarchy of formal languages accepted by different automata.
Among these researches, the research on regular languages accepted by finite
state automata plays an important role.

The Chomsky hierarchy is not the only hierarchy of formal languages. The
Lindenmayer system, L system for short, is a kind of parallel rewriting system
which is a result of applying the theory of formal languages to the developmental
biology (Lindenmayer and Prusinkiewicz, 1990). Each L system is a quadruple
G = 〈V, P, g, ω〉, where V is a finite symbol table. ω ∈ V + is called an axiom. g
is an environment symbol, which does not belong to the symbol table. P is a set of
production rules. The parallel rewriting of a string S in a L system means replacing
all symbols a in S with β at the same time by applying some rule αaγ → β under
the context condition (α, γ ).

If we consider the symbols in V as cells, then the axiom is the origin of the
biological object, the productions are the rules of cell division, and the process of
rewriting is the process of cell division. The repeated execution of parallel rewriting
means the development of the biological object. A (sub-)language denotes the
development of biological specie. A language family denotes the development of
different species, which have the same origin.

Many sub families of L systems have been proposed (Rozenberg and
Salomaa, 1980). To list a few examples, they include IL systems (context-
dependent L systems), 0L systems (context independent L systems), D0L sys-
tems (deterministic 0L systems), PD0L systems (propagating D0L systems),
etc. The formal languages produced by these devices form a hierarchy, which
does not fit into the Chomsky hierarchy. Moreover, Lu and Zhang (2002) have
proposed generalized L systems, where the generation of L languages proceeds
not only in a way of full synchronization, but can also in an asynchronous way.
It was proved in (Lu and Zhang, 2002) that the generalized L systems are more
powerful than traditional L systems. For example, the PD0L languages form a
proper subset of GPD0L (generalized PD0L) languages. Besides, each GPD0L
system is characterized by a finite set F of positive integers {f1, f2, . . . , fn},
which denotes the different numbers of time steps needed for language gener-
ation, called fission periods. It was proved in (Lu and Zhang, 2002) that for
F1 ⊂ F2 the languages produced by system L1 form a proper subset of those
produced by system L2. It was also proved that the sufficient and necessary
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condition for GPD0L [m1,m2, . . . , mj ] and GPD0L [n1, n2, . . . , nk] to be equiv-
alent is (1) j = k, and (2) there exist common divisor h of (m1,m2, . . . , mj )
and common divisor g of (n1, n2, . . . , nk), such that mi

h
= ni

g
, i = 1, . . . , j .

This shows that they form a complete hierarchy of languages (Lu and Zhang,
2002).

It is a natural idea to study the relationship between languages accepted by
quantum automata, which are explored from different points of view. Based on the
idea of von Neumann type quantum logic, Ying has studied languages accepted
by lattice valued finite state quantum automata and obtained a series of results
(Ying, 2000a, 2000b). Lu and Zheng have studied properties of lattices built by
quantum automata (Lu and Zheng, 2003), where it was proved that languages
accepted by deterministic and non-deterministic quantum automata are generally
not equivalent.

Quantum automata based on Hilbert space and probability have been stud-
ied extensively in the literature, e.g. (Kondacs and Watrous, 1997; Moore and
Crutchfield, 2000). For such automata, language hierarchies have been studied,
e.g. by Andris Ambainis et al. (1999), where a definition on finite state quantum
automata, following that given in (Kondacs and Watrous, 1997) and other than
that given in (Moore and Crutchfield, 2000) was presented. The following theorem
was proved: there is a hierarchy of regular languages such that each language in
the hierarchy can be accepted by one-way finite state quantum automata with a
probability smaller than the corresponding probability for its preceding language
in the same hierarchy. Thus, the hierarchy is characterized by the gradual increase
of values of probabilities. We have, on the one hand, proved a classification of
all quantum languages (not only a particular hierarchy of languages) accepted by
finite state quantum automata in the sense of (Moore and Crutchfield, 2000), and,
on the other hand, defined a new type of finite state quantum automata, the finite
stop quantum automata. This definition is different from both given in (Kondacs
and Watrous, 1997; Moore and Crutchfield, 2000). It is worth pointing out that in
this paper not only a hierarchy of languages, but also a hierarchical classification
of all finite stop quantum automata with respect to this definition is given. This
was just the motivation of our research.

8. CONCLUSIONS

In this paper, first we proposed a definition of finite stop quantum automata
based on Hilbert space and compared it with the finite state quantum automata
proposed by Moore and Crutchfield (2000). We proved that the languages ac-
cepted by finite state quantum automata form a proper subset of the languages
accepted by finite stop quantum automata. Furthermore, we proved the facts that
the language class accepted by n-dimensional finite state quantum automata is a
proper subclass of the language class accepted by n + 1-dimensional finite state
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quantum automata. In addition, we have introduced complex valued acceptance
degrees for quantum automata. In this way, two new types of quantum automata
have been defined and the relations between the languages accepted by them have
been discussed. It was proved that the language class accepted by invariant finite
stop quantum automata is a proper subclass of the language class accepted by
variant finite stop quantum automata. Furthermore, we have also proved that the
language class accepted by n-dimensional invariant finite stop quantum automata
is a proper subclass of the language class accepted by n + 1-dimensional invariant
finite stop quantum automata. In this way we have established two infinite hierar-
chies of quantum automata: the finite state ones and the invariant finite stop ones.
The third infinite hierarchy, namely the hierarchy of variant finite stop quantum
automata, has not yet been proven and thus remains an open problem.
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